All amplifier measurements are performed independently by BHK Labs. All measurement data and graphical information displayed below are the property of the SoundStage! Network and Schneider Publishing Inc. Reproduction in any format is not permitted.
Notes: Measurements of the Benchmark AHB2 were taken at the balanced inputs of both channels at 120V AC line voltage, both channels driven. Unless otherwise noted, the data reported below are for the left channel.
The AHB2 is Benchmark’s attempt to produce a very-low-distortion, low-noise power amplifier using THX’s AAA Technology, which linearizes the amp’s class-AB output stage without using large amounts of overall negative feedback. I must say that they’ve succeeded; I measured less distortion and noise in the AHB2 than in any other of the many power amps I’ve measured over the years.
Because the AHB2 can be switched between stereo and bridged-mono modes, some measurements were taken with the amp in both modes; the charts labeled “B” indicate measurements in bridged mode. The AHB2 has input sensitivities of 2V, 4V, and 9.8V. Most of the testing was done at the 2V sensitivity; the distortion results were pretty much the same at the 9.8V sensitivity.
Chart 1 shows the AHB2’s frequency response into different loads. The slightly greater high-frequency rolloff in bridged-mono mode (not shown) is due to the series-connected nature of that mode, which caused the HF deviation with load to show up more than in stereo mode. Because the AHB2’s output regulation is so good, its measured performance into the IHF dummy load showed no significant variation within the audioband.
Chart 2A illustrates how the AHB2’s total harmonic distortion plus noise (THD+N) vs. power varied with 1kHz and SMPTE intermodulation test signals and amplifier output load into loads of 8 and 4 ohms. Chart 2B shows the mono results into 8 ohms; in bridged mono, the AHB2 is not rated for use into a load of 4 ohms.
The AHB2’s THD+N as a function of frequency at different power levels is plotted in Chart 3. High-frequency THD+N is admirably low, and in stereo and mono modes, the AHB2’s level of distortion throughout most of the power range is amazingly low.
The plot of the AHB2’s damping factor vs. frequency (Chart 4) is of a value and nature typical of many solid-state amplifiers: high up to 1-2kHz, then rolling off with increasing frequency.
Spectra of the THD+N residue of a 10W, 1kHz test signal are plotted in Charts 5A and 5B. The magnitudes of AC line harmonics are relatively low, and the signal harmonics -- consisting of the third and fifth harmonics in stereo mode -- are extremely low in amplitude. Chart 5B shows this to be similar in mono mode, but with the fifth harmonic being higher, and the seventh and higher harmonics visible but at extremely low levels.
Stereo mode
Red line = open circuit
Magenta line = 8-ohm load
Blue line = 4-ohm load
Chart 2A
Stereo mode
(Line up at 50W to determine lines)
Top line = 4-ohm SMPTE IM distortion
Second line = 8-ohm SMPTE IM distortion
Third line = 4-ohm THD+N
Bottom line = 8-ohm THD+N
Chart 2B
Mono mode
(Line up at 100W to determine lines)
Top line = 8-ohm SMPTE IM distortion
Second line = 8-ohm THD+N
Stereo mode
(4-ohm loading)
Red line = 2W
Magenta line = 20W
Blue line = 60W
Cyan line = 120W
Green line = 180W
Stereo mode
Damping factor = output impedance divided into 8
Chart 5A
Stereo mode
1kHz signal at 10W into an 8-ohm load
Chart 5B
Mono mode
1kHz signal at 10W into an 8-ohm load
All amplifier measurements are performed independently by BHK Labs. All measurement data and graphical information displayed below are the property of the SoundStage! Network and Schneider Publishing Inc. Reproduction in any format is not permitted.
Measurements were made at 120V AC line voltage with all three channels driven. Unless otherwise noted, all measurements were taken at the balanced inputs. The data reported below are for channel one unless otherwise noted.
Note 1: As a matter of interest, the AC power draw on turn-on is up to about 210W, which slowly comes down as the unit warms up.
Note 2: Gain values were averaged for the three channels.
Note 3: Input sensitivity values were averaged for the three channels.
Note 4: Noise values for the three channels averaged for the three gain settings.
The high-powered Halo A 31 is the only three-channel power amplifier in Parasound’s extensive line of Halo products.
Chart 1 shows the frequency response of the Halo A 31 with varying loads. Unusual is the uniformity of the high-frequency rolloff with changing load. The Halo’s output impedance is so low that its response with the NHT dummy speaker load would not show up.
Chart 2 illustrates how the A 31’s total harmonic distortion plus noise (THD+N) vs. power varies for 1kHz and SMPTE IM test signals and amplifier output for loads of 8 and 4 ohms.
The THD+N as a function of frequency at several different power levels is plotted in Chart 3. High-frequency rise with frequency is moderate, and the amount of distortion is quite low through most of the power range. Interesting is that there is a dip in distortion at around 500Hz at the higher powers.
I wonder if that dip in distortion is related in some way to the peak in the curve of damping factor vs. frequency, shown in Chart 4. Most unusual is that this curve, too, peaks at about 500Hz, then decreases and shelves off as the frequency decreases. This almost suggests that some open-loop frequency shaping was done to tune the sound -- speculation on my part.
Chart 5A plots the spectrum of the harmonic distortion and noise residue of a 10W, 1kHz test signal for the Halo A 31’s balanced inputs; Chart 5B plots the same for the unbalanced inputs. The unbalanced input is quite a bit worse, with the AC line harmonics extending up into the signal harmonics. The measurements shown are of channel three, which had more transformer-induced noise than channels one and two, on the other side of the amp.
Red line = open circuit
Magenta line = 8-ohm load
Blue line = 4-ohm load
(Line up at 100W to determine lines)
Top line = 8-ohm THD+N
Second line = 4-ohm THD+N
Third line = 8-ohm SMPTE IM distortion
Bottom line = 4-ohm SMPTE IM distortion
(8-ohm loading)
Red line = 1W
Magenta line = 10W
Blue line = 70W
Cyan line = 150W
Green line = 200W
Damping factor = output impedance divided into 8
Chart 5A - balanced inputs
1kHz signal at 10W into an 8-ohm load
Chart 5B - unbalanced inputs
1kHz signal at 10W into an 8-ohm load
All amplifier measurements are performed independently by BHK Labs. All measurement data and graphical information displayed below are the property of the SoundStage! Network and Schneider Publishing Inc. Reproduction in any format is not permitted.
Notes: Measurements of the unbalanced (UB) and balanced (B) inputs of both channels were made at the 120V AC line voltage, both channels driven. Since the Luxman M-900u is switchable from stereo to mono mode, measurements were made in both modes. (The suffix “B” indicates a mono-mode measurement.) Unless otherwise noted, the data reported below are for the balanced inputs and the left channel.
Charts 1A and 1B show the frequency response of the Luxman M-900u with varying loads. Otherwise essentially identical to the stereo mode in the audioband, the mono response shows a bit more dependence on load above that range. The M-900u’s output regulation is so good that the IHF dummy load showed no significant variation in the audioband.
Chart 2A illustrates how total harmonic distortion plus noise (THD+N) vs. power varies for 1kHz and SMPTE intermodulation (IM) test signals and amplifier output load for loads of 8 and 4 ohms. Chart 2B is for mono mode and a load of 8 ohms, as the M-900u is not specified for a mono load of 4 ohms.
THD+N as a function of frequency at several different power levels is plotted in Charts 3A and 3B. High-frequency rise with frequency is moderate, and the distortion is quite low over most of the power range in both stereo and mono modes.
The plot of damping factor vs. frequency (Chart 4A) is of a value and nature typical of many solid-state amplifiers: high up to about 1-2kHz, then rolling off with increasing frequency. The damping factor in mono mode (4B) is about half that in stereo mode, with the same curve shape. This is normal; the channels’ separate output impedances are in series with the load in mono or bridged mode.
The M-900u’s spectrum of harmonic distortion and noise residue of a 10W, 1kHz test signal is shown in Charts 5A and 5B. The AC line harmonics are relatively low in magnitude and simple in nature. The signal harmonics in stereo mode consist of a single second harmonic of low amplitude. In mono mode, the single second harmonic seems to have been canceled and does not show at all!
Chart 1A
Stereo mode
Blue line = open circuit
Red line = 8-ohm load
Magenta line = 4-ohm load
Chart 1B
Mono mono
Blue line = open circuit
Red line = 8-ohm load
Magenta line = 4-ohm load
Chart 2A
Stereo mode
(Line up at 100W to determine lines)
Top line = 8-ohm SMPTE IM distortion
Second line = 4-ohm SMPTE IM distortion
Third line = 8-ohm THD+N
Bottom line = 4-ohm THD+N
Chart 2B
Mono mode
(Line up at 100W to determine lines)
Top line = 8-ohm SMPTE IM distortion
Second line = 8-ohm THD+N
Chart 3A
Stereo mode
(8-ohm loading)
Red line = 1W
Magenta line = 10W
Blue line = 30W
Cyan line = 120W
Green line = 150W
Chart 3B
Mono mode
(8-ohm loading)
Red line = 1W
Magenta line = 20W
Blue line = 60W
Cyan line = 120W
Green line = 600W
Chart 4A
Stereo mode
Damping factor = output impedance divided into 8
Chart 4B
Mono mode
Damping factor = output impedance divided into 8
Chart 5A
Stereo mode
1kHz signal at 10W into an 8-ohm load
Chart 5B
Mono mode
1kHz signal at 10W into an 8-ohm load
All amplifier measurements are performed independently by Warkwyn Associates. All measurement data and graphical information displayed below are the property of the SoundStage! Network and Schneider Publishing Inc. Reproduction in any format is not permitted.
Notes: Measurements were made at 120V AC line voltage with both channels being driven (stereo mode). Measurements made on left channel through the balanced input for stereo and mono modes unless otherwise noted.
All charts: A = stereo mode, B = mono mode.
Charts 1A and 1B show the frequency response of the Hegel H30 with different resistive loads. With loads of 4 and 8 ohms, there are small deviations in output response at 20kHz in both stereo and mono modes, but the dummy-speaker load shows very little deviation at 20kHz, which reflects real-world load conditions.
Charts 2A and 2B illustrate how total harmonic distortion plus noise (THD+N) vs. power varies for 1kHz and SMPTE IM test signals. The results show very low and uniform distortion levels in both modes until clipping is reached.
Charts 3A and 3B show THD+N as a function of frequency at several different power levels into 4 ohms. The high output power achieved in stereo and mono modes with low THD+N is admirable. (Note that the decrease in distortion above 10kHz in these charts is a result of a 22kHz cutoff filter, which helps to improve the accuracy of this test below 10kHz.)
Charts 4A and 4B show the H30’s damping factor vs. frequency. The result in mono mode is about half that in stereo mode, but has a similar shape.
Charts 5A and 5B show the spectrum of harmonic distortion and noise residue for a 10W, 1kHz test signal.
Chart 1A
Stereo mode
Red line = open circuit
Cyan line = 8-ohm load
Blue line = 4-ohm load
Magenta line = dummy-speaker load
Chart 1B
Mono mode
Red line = open circuit
Cyan line = 8-ohm load
Blue line = 4-ohm load
Magenta line = dummy-speaker load
Chart 2A
Stereo mode
(Line up at 20W to determine lines)
Top line = 4-ohm SMPTE IM distortion
Second line = 8-ohm SMPTE IM distortion
Third line = 4-ohm THD+N
Bottom line = 8-ohm THD+N
Chart 2B
Mono mode
(Line up at 20W to determine lines)
Top line = 4-ohm SMPTE IM distortion
Second line = 8-ohm SMPTE IM distortion
Third line = 4-ohm THD+N
Bottom line = 8-ohm THD+N
Chart 3A
Stereo mode, 22kHz cutoff filter
(4-ohm loading)
Cyan line = 2W
Green line = 20W
Blue line = 100W
Red line = 200W
Magenta line = 400W
Chart 3B
Mono mode, 22kHz cutoff filter
(4-ohm loading)
Cyan line = 2W
Green line = 20W
Blue line = 600W
Red line = 1400W
Chart 4A
Stereo mode
Damping factor = output impedance divided into 8
Chart 4B
Mono mode
Damping factor = output impedance divided into 8
Chart 5A
Stereo mode
1kHz signal at 10W into a 4-ohm load
Chart 5B
Mono mode
1kHz signal at 10W into a 4-ohm load
All amplifier measurements are performed independently by BHK Labs. All measurement data and graphical information displayed below are the property of the SoundStage! Network and Schneider Publishing Inc. Reproduction in any format is not permitted.
Measurements of the Pathos Lògos were made at 120V AC line voltage, both channels driven, with the left channel measured at the balanced inputs, unless otherwise noted. Measurements were made using the old IHF integrated-amplifier standard, in which the volume control is set to a nominal 5W output into 8 ohms with a 500mV analog input.
The Pathos Lògos MKII is a medium-power stereo integrated amplifier with a vacuum-tube input stage. It can be ordered with a built-in DAC module, but the review sample lacked this option.
Chart 1 shows the Lògos’s frequency response with varying loads. The frequency response has a high-frequency bandwidth of about 199kHz, depending on the load. The output impedance is low in the audioband, and the variations due to the NHT dummy load did not appear and therefore are not shown here. Note the mild low-frequency rolloff beginning at about 50Hz. To test volume-control tracking and frequency response as functions of the volume setting, a measurement test (results not shown) was set up to establish a reference point. The volume was set to its maximum level at 5W output. The responses of both channels were then measured as the volume was reduced in 10dB increments. Volume tracking was excellent right down to -60dB, the response shape remaining constant at all levels -- something that is not always the case, especially at very low volume settings.
Chart 2 illustrates how total harmonic distortion plus noise (THD+N) vs. power varies for 1kHz and SMPTE IM test signals and amplifier output load into 8 and 4 ohms. Not usually seen, although low, the distortion of this amp is quite constant over a very wide power range.
The Lògos’s THD+N as a function of frequency at several different power levels is plotted in Chart 3. The amount of rise in high-frequency distortion is significant, especially with increasing power level.
The Lògos’s damping factor vs. frequency, shown in Chart 4, has a shape typical of most power amplifiers, except that the high-frequency rolloff starts quite a bit higher than the usual 0.5-1kHz.
A spectrum of the Lògos’s harmonic distortion and noise residue of a 10W, 1kHz test signal is plotted in Chart 5. The magnitudes of the AC line harmonics are low in amplitude compared to the signal harmonics. The signal harmonics are reasonably low in amplitude, with odd harmonics dominating, and with a complex and decreasing series of odd and even harmonics.
Red line = open circuit
Magenta line = 8-ohm load
Blue line = 4-ohm load
(Line up at 30W to determine lines)
Top line = 4-ohm SMPTE IM distortion
Second line = 8-ohm SMPTE IM distortion
Third line = 4-ohm THD+N
Bottom line = 8-ohm THD+N
(4-ohm loading)
Red line = 1W
Magenta line = 10W
Blue line = 30W
Cyan line = 70W
Green line = 110W
Damping factor = output impedance divided into 8
1kHz signal at 10W into an 8-ohm load
All amplifier measurements are performed independently by Warkwyn Associates. All measurement data and graphical information displayed below are the property of the SoundStage! Network and Schneider Publishing Inc. Reproduction in any format is not permitted.
Note: Measurements were made at 120V AC line voltage and through the balanced inputs with both channels driven unless otherwise noted. All measurements made with the Stanford Research Systems SR1 audio analyzer.
The Hegel H80 is a medium-powered, solid-state integrated amplifier with analog and digital inputs. Its 31dB of voltage gain is typical for a modern integrated amplifier. Measurements were performed through the balanced analog inputs and coaxial digital input, as noted.
Chart 1A shows the H80’s frequency response through the analog inputs with varying loads. The close spacing of the lines from 10Hz to nearly 20kHz indicates a low output impedance that will minimally interact with most loudspeakers. In the lowest frequencies, the H80’s output does taper off slightly beginning at about 70Hz, but is down by only 0.5dB at 10Hz. The measurements reveal some load dependence in the upper frequencies, with the open-circuit test flat to nearly 50kHz, the 8-ohm loading down by 0.1dB at 20kHz, and the 4-ohm loading down by 0.2dB at 20kHz, though the latter drops are quite small.
Chart 1B shows the frequency response into varying loads when fed a 24-bit/48kHz signal through the coaxial digital input. As with the analog inputs, the lines are closely spaced, meaning there will be little variation, regardless of load. The lowest frequencies show the same kind of subtle rolloff as through the analog inputs, but all load conditions, even the open circuit, show a slight rolloff of 0.3-0.5dB by 20kHz, likely due to the influence of the antialiasing filter.
Chart 2 shows how total harmonic distortion (THD) plus noise and intermodulation distortion (IMD) vary in relation to power output. THD and IMD levels stay comfortably below 0.05% at output levels short of clipping.
Chart 3A shows distortion in relation to power output and frequency for the balanced analog inputs. Distortion remains below 0.02% from 20Hz to about 12kHz for power-output levels of 1 to 70W, and falls below 0.01% above about 12kHz for those same power levels. Chart 3B is the same test, but with a 24/48 signal fed through the coaxial input of the DAC section. The 1W distortion level is slightly higher than through the analog inputs, but still less than 0.03% throughout the audioband. For higher power levels, the distortion remains below 0.02% from 20Hz to 10kHz, and is less than 0.01% for higher frequencies. (Note that the decrease in distortion above 10kHz in these charts is a result of a 22kHz cutoff filter, which helps to improve the accuracy of this test below 10kHz.)
Chart 4 shows damping factor vs. frequency. The H80’s damping factor is usefully high from about 100Hz to 4kHz. The decrease in damping factor into higher frequencies is typical for a solid-state amplifier, but the rolloff below 100Hz is unusual, and may be related to the H80’s tapering response into lower frequencies seen in Chart 1A. The shape of this curve is similar to that of Hegel’s H20 stereo power amplifier, which was measured in 2011.
Chart 5A shows the spectrum of harmonic distortion and noise residue of a 1kHz test signal at 10W fed through the balanced analog input. A series of power-supply-related harmonics are visible, as are intermodulation components of signal harmonics in line harmonics, but all lie below 0.0001%. The highest signal harmonic is the third, at about 0.002%, with higher-order harmonics visible to beyond 10kHz.
Chart 5B shows the same test with the signal fed through the coaxial digital input. Noise from the power supply is higher than through the analog input, with the second harmonic reaching 0.0017%, but any intermodulation components remain below 0.0001%. With the digital input, the second signal harmonic is the strongest, at about 0.004%, and a long series of higher harmonics are still apparent.
Chart 1A - balanced analog input
Black line = open circuit
Magenta line = dummy-speaker load
Cyan line = 8-ohm load
Blue line = 4-ohm load
Chart 1B - digital input @ 48kHz
Black line = open circuit
Magenta line = dummy-speaker load
Cyan line = 8-ohm load
Blue line = 4-ohm load
(Line up at 10W to determine lines)
Top line (red dashed) = 4-ohm SMPTE IM distortion
Second line (black dashed) = 8-ohm SMPTE IM distortion
Third line (red) = 4-ohm THD+N
Bottom line (black) = 8-ohm THD+N
Chart 3A - balanced analog input, 22kHz cutoff filter
(8-ohm loading)
Black line = 1W
Green line = 10W
Blue line = 20W
Red line = 40W
Magenta line = 70W
Chart 3B - digital (coaxial) input @ 48kHz, 22kHz cutoff filter
(8-ohm loading)
Black line = 1W
Green line = 10W
Blue line = 20W
Red line = 40W
Magent line = 70W
Damping factor = output impedance divided into 8
Chart 5A - balanced analog input
1kHz signal at 10W into an 8-ohm load
Chart 5B - digital (coaxial) input at 48kHz
1kHz signal at 10W into an 8-ohm load
All amplifier measurements are performed independently by BHK Labs. All measurement data and graphical information displayed below are the property of the SoundStage! Network and Schneider Publishing Inc. Reproduction in any format is not permitted.
Notes: Measurements of the unbalanced and balanced inputs of both channels were made at the 120V AC line voltage, both channels driven. Since the Parasound Halo A 23 is switchable from stereo to mono mode, measurements were made in both modes. (The suffix “A” indicates a stereo-mode measurement. The suffix “B” indicates a mono-mode measurement.) Unless otherwise noted, the data reported below are for the unbalanced inputs and the left channel.
The Parasound Halo A 23 is a stereo power amplifier of moderate power output, and the lowest-powered amp in the Halo line. As the A 23 can be switched from stereo to bridged mode, both modes were measured. In the charts, the suffix “B” indicates measurements taken in bridged mode.
Charts 1A and 1B show the frequency response of the A 23 with varying loads. There is more high-frequency rolloff in bridged mode due to the series-connected nature of this mode. This also causes the high-frequency deviation with load to show up more. Since the A 23’s regulation is so good, the IHF dummy load wouldn’t show any significant variation in the audioband.
Chart 2 illustrates how the A 23’s total harmonic distortion plus noise (THD+N) vs. power varies for 1kHz and SMPTE IM test signals for loads of 8 and 4 ohms. Chart 2B is for bridged mode into 8 ohms -- the A 23 is not specified for bridged use into loads of 4 ohms. Interestingly, the curves for 1kHz THD+N and SMPTE IM distortions are almost an overlay.
THD+N as a function of frequency at different power levels is plotted in Charts 3A and 3B. High-frequency rise with frequency is moderate, and distortion is quite low through most of the power range in both stereo and bridged-mono modes.
The Halo A 23’s damping factor vs. frequency, shown in Chart 4A, is of a value and nature typical of many solid-state amplifiers: high up to 1-2kHz, then rolling off with increasing frequency. Somewhat puzzling was the measurement of damping factor in bridged-mono mode (4B). Usually, this is about half the damping factor in the individual channels of a stereo amp in stereo mode, but in the case of the A 23 it was much lower. I checked this with an alternate method, comparing the open-circuit voltage vs. the voltage when loaded with 4 ohms, and got the same result.
A spectrum of the residue of harmonic distortion and noise of a 10W, 1kHz test signal is plotted in Charts 5A and 5B. The AC-line harmonics are complex but relatively low in magnitude. Signal harmonics are low enough in amplitude, and consist mostly of a descending series of odd harmonics. Things are similar in bridged mode (Chart 5B), but with magnitudes about doubled.
Chart 1A
Stereo mode
Red line = open circuit
Magenta line = 8-ohm load
Blue line = 4-ohm load
Chart 1B
Mono mode
Red line = open circuit
Magenta line = 8-ohm load
Blue line = 4-ohm load
Chart 2A
Stereo mode
(Line up at 20W to determine lines)
Top line = 4-ohm THD+N
Second line = 8-ohm THD+N
Third line = 4-ohm SMPTE IM distortion
Bottom line = 8-ohm SMPTE IM distortion
Chart 2B
Mono mode
(Line up at 300W to determine lines)
Top line = 8-ohm SMPTE IM distortion
Second line = 8-ohm THD+N
Chart 3A
Stereo mode
(8-ohm loading)
Red line = 1W
Magenta line = 10W
Blue line = 70W
Cyan line = 100W
Green line = 125W
Chart 3B
Mono mode
(8-ohm loading)
Red line = 1W
Magenta line = 10W
Blue line = 0W
Cyan line = 100W
Green line = 300W
Chart 4A
Stereo mode
Damping factor = output impedance divided into 8
Chart 4B
Mono mode
Damping factor = output impedance divided into 8
Chart 5A
Stereo mode
1kHz signal at 10W into an 8-ohm load
Chart 5B
Mono mode
1kHz signal at 10W into an 8-ohm load
All amplifier measurements are performed independently by BHK Labs. All measurement data and graphical information displayed below are the property of the SoundStage! Network and Schneider Publishing Inc. Reproduction in any format is not permitted.
Note: Measurements were made at 120V AC line voltage with both channels being driven. Measurements made on left channel through the balanced inputs unless otherwise noted.
The Ayre Acoustics VX-5 is a medium-power stereo amplifier. Like previous Ayre power amplifiers, it is fully balanced and uses no overall negative feedback.
Chart 1 shows the VX-5’s frequency response with varying loads: very flat throughout the entire test range of 10Hz-200kHz. The output impedance is low, but still high enough that you can just see the effects of changes in load on the vertical scale used for FR charts. The response to a dummy NHT speaker load is barely discernible between the limits of an open circuit and a 4-ohm load, which indicates that the impedances of most speakers won’t materially affect the VX-5’s frequency-response output.
Chart 2 illustrates how total harmonic distortion plus noise (THD+N) vs. power varies with 1kHz and SMPTE intermodulation (IM) test signals and amplifier output load for 8- and 4-ohm loads. The amount of distortion and how it rises with output level is similar to some other MOSFET power amps I have measured recently.
THD+N as a function of frequency at different power levels is plotted in Chart 3. The amount of rise in distortion at high frequencies is reasonably low in this design.
Damping factor vs. frequency, shown in Chart 4, is of a quality rarely seen in power amplifiers: flat throughout the audioband! I can remember only a very few other designs that achieved this.
A spectrum of the harmonic distortion and noise residue of a 10W, 1kHz test signal is plotted in Chart 5. The magnitudes of the AC-line harmonics are very low and simple except for a few clustered around the suppressed 1kHz test signal. The dominant signal harmonic is the third, a testament to the circuitry’s basic symmetry.
Red line = open circuit
Magenta line = 8-ohm load
Blue line = 4-ohm load
Cyan line = NHT dummy load
(Line up at 10W to determine lines)
Top line = 4-ohm SMPTE IM distortion
Second line = 8-ohm SMPTE IM distortion
Third line = 4-ohm THD+N
Bottom line = 8-ohm THD+N
(4-ohm loading)
Red line = 2W
Magenta line = 20W
Blue line = 100W
Cyan line = 200W
Green line = 250W
Damping factor = output impedance divided into 8
1kHz signal at 10W into an 8-ohm load
The following categories containing listings of all product reviews published by the SoundStage! Network since 1995 from all of our online publications. The products are divided into categories and listed in descending order by date. There is no Search function within the listings, but you can search by bringing up the page with the appropriate list and using the "Find" command on your browser. (For Internet Explorer select: Edit > Find on this Page.)